CF1030G Linear Congruential Generator

Description

You are given a tuple generator $ f^{(k)} = (f_1^{(k)}, f_2^{(k)}, \dots, f_n^{(k)}) $ , where $ f_i^{(k)} = (a_i \cdot f_i^{(k - 1)} + b_i) \bmod p_i $ and $ f^{(0)} = (x_1, x_2, \dots, x_n) $ . Here $ x \bmod y $ denotes the remainder of $ x $ when divided by $ y $ . All $ p_i $ are primes. One can see that with fixed sequences $ x_i $ , $ y_i $ , $ a_i $ the tuples $ f^{(k)} $ starting from some index will repeat tuples with smaller indices. Calculate the maximum number of different tuples (from all $ f^{(k)} $ for $ k \ge 0 $ ) that can be produced by this generator, if $ x_i $ , $ a_i $ , $ b_i $ are integers in the range $ [0, p_i - 1] $ and can be chosen arbitrary. The answer can be large, so print the remainder it gives when divided by $ 10^9 + 7 $

Input Format

The first line contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the number of elements in the tuple. The second line contains $ n $ space separated prime numbers — the modules $ p_1, p_2, \ldots, p_n $ ( $ 2 \le p_i \le 2 \cdot 10^6 $ ).

Output Format

Print one integer — the maximum number of different tuples modulo $ 10^9 + 7 $ .

Explanation/Hint

In the first example we can choose next parameters: $ a = [1, 1, 1, 1] $ , $ b = [1, 1, 1, 1] $ , $ x = [0, 0, 0, 0] $ , then $ f_i^{(k)} = k \bmod p_i $ . In the second example we can choose next parameters: $ a = [1, 1, 2] $ , $ b = [1, 1, 0] $ , $ x = [0, 0, 1] $ .