CF1036C Classy Numbers

Description

Let's call some positive integer classy if its decimal representation contains no more than $ 3 $ non-zero digits. For example, numbers $ 4 $ , $ 200000 $ , $ 10203 $ are classy and numbers $ 4231 $ , $ 102306 $ , $ 7277420000 $ are not. You are given a segment $ [L; R] $ . Count the number of classy integers $ x $ such that $ L \le x \le R $ . Each testcase contains several segments, for each of them you are required to solve the problem separately.

Input Format

The first line contains a single integer $ T $ ( $ 1 \le T \le 10^4 $ ) — the number of segments in a testcase. Each of the next $ T $ lines contains two integers $ L_i $ and $ R_i $ ( $ 1 \le L_i \le R_i \le 10^{18} $ ).

Output Format

Print $ T $ lines — the $ i $ -th line should contain the number of classy integers on a segment $ [L_i; R_i] $ .