CF1038C Gambling

题目描述

### 题目大意: 两个人$A,B$玩游戏,每个人有1个长度为$n$的序列,每次一个人可以从序列中拿一个数并加入自己的分数,或者把对手序列中没选的数中去掉一个,这两个人都足够聪明,求$A$分数与$B$分数的差

输入格式

第一行一个整数$n$ 第二行$n$个整数,表示A的序列 第三行$n$个整数,表示B的序列 第一行一个整数$n$ 第二行$n$个整数,表示A的序列 第三行$n$个整数,表示B的序列

输出格式

一个整数,表示$A$分数与$B$分数的差 ``` ### 题目大意: 两个人$A,B$玩游戏,每个人有1个长度为$n$的序列,每次一个人可以从序列中拿一个数并加入自己的分数,或者把对手序列中没选的数中去掉一个,这两个人都足够聪明,求$A$分数与$B$分数的差 一个整数,表示$A$分数与$B$分数的差 ```

说明/提示

In the first example, the game could have gone as follows: - A removes $ 5 $ from B's list. - B removes $ 4 $ from A's list. - A takes his $ 1 $ . - B takes his $ 1 $ . Hence, A's score is $ 1 $ , B's score is $ 1 $ and difference is $ 0 $ . There is also another optimal way of playing: - A removes $ 5 $ from B's list. - B removes $ 4 $ from A's list. - A removes $ 1 $ from B's list. - B removes $ 1 $ from A's list. The difference in the scores is still $ 0 $ . In the second example, irrespective of the moves the players make, they will end up with the same number of numbers added to their score, so the difference will be $ 0 $ .