CF1093G Multidimensional Queries

Description

You are given an array $ a $ of $ n $ points in $ k $ -dimensional space. Let the distance between two points $ a_x $ and $ a_y $ be $ \sum \limits_{i = 1}^{k} |a_{x, i} - a_{y, i}| $ (it is also known as Manhattan distance). You have to process $ q $ queries of the following two types: - $ 1 $ $ i $ $ b_1 $ $ b_2 $ ... $ b_k $ — set $ i $ -th element of $ a $ to the point $ (b_1, b_2, \dots, b_k) $ ; - $ 2 $ $ l $ $ r $ — find the maximum distance between two points $ a_i $ and $ a_j $ , where $ l \le i, j \le r $ .

Input Format

The first line contains two numbers $ n $ and $ k $ ( $ 1 \le n \le 2 \cdot 10^5 $ , $ 1 \le k \le 5 $ ) — the number of elements in $ a $ and the number of dimensions of the space, respectively. Then $ n $ lines follow, each containing $ k $ integers $ a_{i, 1} $ , $ a_{i, 2} $ , ..., $ a_{i, k} $ ( $ -10^6 \le a_{i, j} \le 10^6 $ ) — the coordinates of $ i $ -th point. The next line contains one integer $ q $ ( $ 1 \le q \le 2 \cdot 10^5 $ ) — the number of queries. Then $ q $ lines follow, each denoting a query. There are two types of queries: - $ 1 $ $ i $ $ b_1 $ $ b_2 $ ... $ b_k $ ( $ 1 \le i \le n $ , $ -10^6 \le b_j \le 10^6 $ ) — set $ i $ -th element of $ a $ to the point $ (b_1, b_2, \dots, b_k) $ ; - $ 2 $ $ l $ $ r $ ( $ 1 \le l \le r \le n $ ) — find the maximum distance between two points $ a_i $ and $ a_j $ , where $ l \le i, j \le r $ . There is at least one query of the second type.

Output Format

Print the answer for each query of the second type.