CF1110A Parity

Description

You are given an integer $ n $ ( $ n \ge 0 $ ) represented with $ k $ digits in base (radix) $ b $ . So, $n = a_1 \cdot b^{k-1} + a_2 \cdot b^{k-2} + \ldots a_{k-1} \cdot b + a_k. $ For example, if $ b=17, k=3 $ and $ a=\[11, 15, 7\] $ then $ n=11\\cdot17^2+15\\cdot17+7=3179+255+7=3441 $ Determine whether $ n$ is even or odd.

Input Format

The first line contains two integers $ b $ and $ k $ ( $ 2\le b\le 100 $ , $ 1\le k\le 10^5 $ ) — the base of the number and the number of digits. The second line contains $ k $ integers $ a_1, a_2, \ldots, a_k $ ( $ 0\le a_i < b $ ) — the digits of $ n $ . The representation of $ n $ contains no unnecessary leading zero. That is, $ a_1 $ can be equal to $ 0 $ only if $ k = 1 $ .

Output Format

Print "even" if $ n $ is even, otherwise print "odd". You can print each letter in any case (upper or lower).

Explanation/Hint

In the first example, $ n = 3 \cdot 13^2 + 2 \cdot 13 + 7 = 540 $ , which is even. In the second example, $ n = 123456789 $ is odd. In the third example, $ n = 32 \cdot 99^4 + 92 \cdot 99^3 + 85 \cdot 99^2 + 74 \cdot 99 + 4 = 3164015155 $ is odd. In the fourth example $ n = 2 $ .