CF1117A Best Subsegment

Description

You are given array $ a_1, a_2, \dots, a_n $ . Find the subsegment $ a_l, a_{l+1}, \dots, a_r $ ( $ 1 \le l \le r \le n $ ) with maximum arithmetic mean $ \frac{1}{r - l + 1}\sum\limits_{i=l}^{r}{a_i} $ (in floating-point numbers, i.e. without any rounding). If there are many such subsegments find the longest one.

Input Format

The first line contains single integer $ n $ ( $ 1 \le n \le 10^5 $ ) — length of the array $ a $ . The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \le a_i \le 10^9 $ ) — the array $ a $ .

Output Format

Print the single integer — the length of the longest subsegment with maximum possible arithmetic mean.

Explanation/Hint

The subsegment $ [3, 4] $ is the longest among all subsegments with maximum arithmetic mean.