CF1137E Train Car Selection
题目描述
给出一个序列$a_i$,初始有$n$个$0$。$m$次操作,操作有$3$种:
$1\ k(1 \leq k \leq 10^9)$:在序列开头加入$k$个$0$
$2\ k(1 \leq k \leq 10^9)$:在序列末尾加入$k$个$0$
$3\ b\ s(1 \leq b , s \leq 10^9)$:对序列的所有元素做加法,给序列的第$i$个元素加上$b + s(i-1)$
你需要在每一次操作过后输出当前序列中最小值位置和它的值。如果存在多个最小值则只考虑位置最靠前的。
输入格式
第一行两个正整数$n(1 \leq n \leq 10^9) , m(1 \leq m \leq 300000)$
接下来$m$行每行$2$到$3$个正整数描述一个操作
输出格式
对于每一次操作输出一行两个正整数分别表示最小值位置和最小值。
说明/提示
- Initially the train consists of one car with $ A_1 = 0 $ , let's denote train as $ [0] $ for simplicity.
- After adding one car to the head, train is $ [0, 0] $ .
- After recalculation of values with parameters $ b=1, s=1 $ , train is $ [1, 2] $ .
- After another recalculation of values with the parameters $ b=1, s=1 $ , train is $ [2, 4] $ .
- After adding one car to the end, train is $ [2, 4, 0] $ .
- After another adding one car to the end, train is $ [2, 4, 0, 0] $ .
- After recalculation of values with parameters $ b=1 $ , $ s=1 $ , train is $ [3, 6, 3, 4] $ .
- After adding one car to the end, train is $ [3, 6, 3, 4, 0] $ .
- After recalculation of values with parameters $ b=1 $ , $ s=5 $ , train is $ [4, 12, 14, 20, 21] $ .