Parity Alternated Deletions
题意翻译
$Polycarp$有一个有$n$个数的数组,他会轮流从中删去数,比如:奇数-偶数-奇数-偶数-奇数-偶数-奇数-偶数···$\ \ \ $或:偶数-奇数-偶数-奇数-偶数-奇数-偶数-奇数···直到无法删除。
### 输入格式:
第一行:一个数字$n( 1 \le n \le 2000 1≤n≤2000 )$表示数组大小。
第二行:$n$个数,表示$a_{1},a_{2},a_{3}...a_{n} (0\le a_{i} \le 10^{6})$中的数。
### 输出格式:
一个数,表示数组中剩余数的**最小和**。
若整个数组可以删除,**输出$0$**
题目描述
Polycarp has an array $ a $ consisting of $ n $ integers.
He wants to play a game with this array. The game consists of several moves. On the first move he chooses any element and deletes it (after the first move the array contains $ n-1 $ elements). For each of the next moves he chooses any element with the only restriction: its parity should differ from the parity of the element deleted on the previous move. In other words, he alternates parities (even-odd-even-odd-... or odd-even-odd-even-...) of the removed elements. Polycarp stops if he can't make a move.
Formally:
- If it is the first move, he chooses any element and deletes it;
- If it is the second or any next move:
- if the last deleted element was odd, Polycarp chooses any even element and deletes it;
- if the last deleted element was even, Polycarp chooses any odd element and deletes it.
- If after some move Polycarp cannot make a move, the game ends.
Polycarp's goal is to minimize the sum of non-deleted elements of the array after end of the game. If Polycarp can delete the whole array, then the sum of non-deleted elements is zero.
Help Polycarp find this value.
输入输出格式
输入格式
The first line of the input contains one integer $ n $ ( $ 1 \le n \le 2000 $ ) — the number of elements of $ a $ .
The second line of the input contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \le a_i \le 10^6 $ ), where $ a_i $ is the $ i $ -th element of $ a $ .
输出格式
Print one integer — the minimum possible sum of non-deleted elements of the array after end of the game.
输入输出样例
输入样例 #1
5
1 5 7 8 2
输出样例 #1
0
输入样例 #2
6
5 1 2 4 6 3
输出样例 #2
0
输入样例 #3
2
1000000 1000000
输出样例 #3
1000000