CF1148H Holy Diver

Description

You are given an array which is initially empty. You need to perform $ n $ operations of the given format: - " $ a $ $ l $ $ r $ $ k $ ": append $ a $ to the end of the array. After that count the number of integer pairs $ x, y $ such that $ l \leq x \leq y \leq r $ and $ \operatorname{mex}(a_{x}, a_{x+1}, \ldots, a_{y}) = k $ . The elements of the array are numerated from $ 1 $ in the order they are added to the array. To make this problem more tricky we don't say your real parameters of the queries. Instead your are given $ a' $ , $ l' $ , $ r' $ , $ k' $ . To get $ a $ , $ l $ , $ r $ , $ k $ on the $ i $ -th operation you need to perform the following: - $ a := (a' + lans) \bmod(n + 1) $ , - $ l := (l' + lans) \bmod{i} + 1 $ , - $ r := (r' + lans) \bmod{i} + 1 $ , - if $ l > r $ swap $ l $ and $ r $ , - $ k := (k' + lans) \bmod(n + 1) $ , where $ lans $ is the answer to the previous operation, initially $ lans $ is equal to zero. $ i $ is the id of the operation, operations are numbered from $ 1 $ .The $ \operatorname{mex}(S) $ , where $ S $ is a multiset of non-negative integers, is the smallest non-negative integer which does not appear in the set. For example, $ \operatorname{mex}(\{2, 2, 3\}) = 0 $ and $ \operatorname{mex} (\{0, 1, 4, 1, 6\}) = 2 $ .

Input Format

The first line contains a single integer $ n $ ( $ 1 \leq n \leq 2 \cdot 10^5 $ ) — the length of the array. The next $ n $ lines contain the description of queries. Each of them $ n $ lines contains four non-negative integers $ a' $ , $ l' $ , $ r' $ , $ k' $ ( $ 0, \leq a', l', r', k' \leq 10^9 $ ), describing one operation.

Output Format

For each query print a single integer — the answer to this query.

Explanation/Hint

For the first example the decoded values of $ a $ , $ l $ , $ r $ , $ k $ are the following: $ a_1=0,l_1=1,r_1=1,k_1=1 $ $ a_2=1,l_2=1,r_2=2,k_2=0 $ $ a_3=0,l_3=1,r_3=3,k_3=1 $ $ a_4=1,l_4=1,r_4=4,k_4=2 $ $ a_5=2,l_5=1,r_5=5,k_5=3 $ For the second example the decoded values of $ a $ , $ l $ , $ r $ , $ k $ are the following: $ a_1=2,l_1=1,r_1=1,k_1=2 $ $ a_2=2,l_2=1,r_2=2,k_2=1 $ $ a_3=0,l_3=1,r_3=3,k_3=0 $ $ a_4=0,l_4=2,r_4=2,k_4=3 $ $ a_5=0,l_5=3,r_5=4,k_5=0 $