CF1157E Minimum Array
Description
You are given two arrays $ a $ and $ b $ , both of length $ n $ . All elements of both arrays are from $ 0 $ to $ n-1 $ .
You can reorder elements of the array $ b $ (if you want, you may leave the order of elements as it is). After that, let array $ c $ be the array of length $ n $ , the $ i $ -th element of this array is $ c_i = (a_i + b_i) \% n $ , where $ x \% y $ is $ x $ modulo $ y $ .
Your task is to reorder elements of the array $ b $ to obtain the lexicographically minimum possible array $ c $ .
Array $ x $ of length $ n $ is lexicographically less than array $ y $ of length $ n $ , if there exists such $ i $ ( $ 1 \le i \le n $ ), that $ x_i < y_i $ , and for any $ j $ ( $ 1 \le j < i $ ) $ x_j = y_j $ .
Input Format
The first line of the input contains one integer $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the number of elements in $ a $ , $ b $ and $ c $ .
The second line of the input contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \le a_i < n $ ), where $ a_i $ is the $ i $ -th element of $ a $ .
The third line of the input contains $ n $ integers $ b_1, b_2, \dots, b_n $ ( $ 0 \le b_i < n $ ), where $ b_i $ is the $ i $ -th element of $ b $ .
Output Format
Print the lexicographically minimum possible array $ c $ . Recall that your task is to reorder elements of the array $ b $ and obtain the lexicographically minimum possible array $ c $ , where the $ i $ -th element of $ c $ is $ c_i = (a_i + b_i) \% n $ .