CF1206A Choose Two Numbers
Description
You are given an array $ A $ , consisting of $ n $ positive integers $ a_1, a_2, \dots, a_n $ , and an array $ B $ , consisting of $ m $ positive integers $ b_1, b_2, \dots, b_m $ .
Choose some element $ a $ of $ A $ and some element $ b $ of $ B $ such that $ a+b $ doesn't belong to $ A $ and doesn't belong to $ B $ .
For example, if $ A = [2, 1, 7] $ and $ B = [1, 3, 4] $ , we can choose $ 1 $ from $ A $ and $ 4 $ from $ B $ , as number $ 5 = 1 + 4 $ doesn't belong to $ A $ and doesn't belong to $ B $ . However, we can't choose $ 2 $ from $ A $ and $ 1 $ from $ B $ , as $ 3 = 2 + 1 $ belongs to $ B $ .
It can be shown that such a pair exists. If there are multiple answers, print any.
Choose and print any such two numbers.
Input Format
The first line contains one integer $ n $ ( $ 1\le n \le 100 $ ) — the number of elements of $ A $ .
The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 200 $ ) — the elements of $ A $ .
The third line contains one integer $ m $ ( $ 1\le m \le 100 $ ) — the number of elements of $ B $ .
The fourth line contains $ m $ different integers $ b_1, b_2, \dots, b_m $ ( $ 1 \le b_i \le 200 $ ) — the elements of $ B $ .
It can be shown that the answer always exists.
Output Format
Output two numbers $ a $ and $ b $ such that $ a $ belongs to $ A $ , $ b $ belongs to $ B $ , but $ a+b $ doesn't belong to nor $ A $ neither $ B $ .
If there are multiple answers, print any.
Explanation/Hint
In the first example, we can choose $ 20 $ from array $ [20] $ and $ 20 $ from array $ [10, 20] $ . Number $ 40 = 20 + 20 $ doesn't belong to any of those arrays. However, it is possible to choose $ 10 $ from the second array too.
In the second example, we can choose $ 3 $ from array $ [3, 2, 2] $ and $ 1 $ from array $ [1, 5, 7, 7, 9] $ . Number $ 4 = 3 + 1 $ doesn't belong to any of those arrays.
In the third example, we can choose $ 1 $ from array $ [1, 3, 5, 7] $ and $ 1 $ from array $ [7, 5, 3, 1] $ . Number $ 2 = 1 + 1 $ doesn't belong to any of those arrays.