# Optimal Currency Exchange

## 题意翻译

### 题目描述 Andrew参加了Olympiad of Metropolises，现准备回国，需要兑换货币。 现有如下面额的美元纸币：$1 , 2 , 5 , 10 , 20 , 50 , 100$，以及以下面额的欧元纸币：$5 , 10 , 20 , 50 , 100 , 200$（注意，不考虑$500$欧元纸币，因为在货币兑换窗口很难找到这种）。已知兑换$1$美元需要$d$卢布，$1$欧元需要$e$卢布，而Andrew有$n$卢布。 他可以兑换任意数量的美元和欧元（一种纸币可以兑换多次，可以美元和欧元混合），并且，他希望使兑换后手里剩余的卢布数尽可能少。请你写一个程序帮他解决问题（只需求出最小的剩余卢布数）。 ### 输入格式 3行，3个正整数$n,d,e$。 ### 输出格式 1行，1个非负整数表示最小剩余量。 ### 数据范围 $1 \leq n \leq 10^8$ $30 \leq d,e \leq 100$

## 题目描述

Andrew was very excited to participate in Olympiad of Metropolises. Days flew by quickly, and Andrew is already at the airport, ready to go home. He has $n$ rubles left, and would like to exchange them to euro and dollar bills. Andrew can mix dollar bills and euro bills in whatever way he wants. The price of one dollar is $d$ rubles, and one euro costs $e$ rubles. Recall that there exist the following dollar bills: $1$ , $2$ , $5$ , $10$ , $20$ , $50$ , $100$ , and the following euro bills — $5$ , $10$ , $20$ , $50$ , $100$ , $200$ (note that, in this problem we do not consider the $500$ euro bill, it is hard to find such bills in the currency exchange points). Andrew can buy any combination of bills, and his goal is to minimize the total number of rubles he will have after the exchange. Help him — write a program that given integers $n$ , $e$ and $d$ , finds the minimum number of rubles Andrew can get after buying dollar and euro bills.

## 输入输出格式

### 输入格式

The first line of the input contains one integer $n$ ( $1 \leq n \leq 10^8$ ) — the initial sum in rubles Andrew has. The second line of the input contains one integer $d$ ( $30 \leq d \leq 100$ ) — the price of one dollar in rubles. The third line of the input contains integer $e$ ( $30 \leq e \leq 100$ ) — the price of one euro in rubles.

### 输出格式

Output one integer — the minimum number of rubles Andrew can have after buying dollar and euro bills optimally.

## 输入输出样例

### 输入样例 #1

100
60
70


### 输出样例 #1

40


### 输入样例 #2

410
55
70


### 输出样例 #2

5


### 输入样例 #3

600
60
70


### 输出样例 #3

0


## 说明

In the first example, we can buy just $1$ dollar because there is no $1$ euro bill. In the second example, optimal exchange is to buy $5$ euro and $1$ dollar. In the third example, optimal exchange is to buy $10$ dollars in one bill.