CF1215B The Number of Products
Description
You are given a sequence $ a_1, a_2, \dots, a_n $ consisting of $ n $ non-zero integers (i.e. $ a_i \ne 0 $ ).
You have to calculate two following values:
1. the number of pairs of indices $ (l, r) $ $ (l \le r) $ such that $ a_l \cdot a_{l + 1} \dots a_{r - 1} \cdot a_r $ is negative;
2. the number of pairs of indices $ (l, r) $ $ (l \le r) $ such that $ a_l \cdot a_{l + 1} \dots a_{r - 1} \cdot a_r $ is positive;
Input Format
The first line contains one integer $ n $ $ (1 \le n \le 2 \cdot 10^{5}) $ — the number of elements in the sequence.
The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ $ (-10^{9} \le a_i \le 10^{9}; a_i \neq 0) $ — the elements of the sequence.
Output Format
Print two integers — the number of subsegments with negative product and the number of subsegments with positive product, respectively.