CF1234E Special Permutations
Description
Let's define $ p_i(n) $ as the following permutation: $ [i, 1, 2, \dots, i - 1, i + 1, \dots, n] $ . This means that the $ i $ -th permutation is almost identity (i.e. which maps every element to itself) permutation but the element $ i $ is on the first position. Examples:
- $ p_1(4) = [1, 2, 3, 4] $ ;
- $ p_2(4) = [2, 1, 3, 4] $ ;
- $ p_3(4) = [3, 1, 2, 4] $ ;
- $ p_4(4) = [4, 1, 2, 3] $ .
You are given an array $ x_1, x_2, \dots, x_m $ ( $ 1 \le x_i \le n $ ).
Let $ pos(p, val) $ be the position of the element $ val $ in $ p $ . So, $ pos(p_1(4), 3) = 3, pos(p_2(4), 2) = 1, pos(p_4(4), 4) = 1 $ .
Let's define a function $ f(p) = \sum\limits_{i=1}^{m - 1} |pos(p, x_i) - pos(p, x_{i + 1})| $ , where $ |val| $ is the absolute value of $ val $ . This function means the sum of distances between adjacent elements of $ x $ in $ p $ .
Your task is to calculate $ f(p_1(n)), f(p_2(n)), \dots, f(p_n(n)) $ .
Input Format
The first line of the input contains two integers $ n $ and $ m $ ( $ 2 \le n, m \le 2 \cdot 10^5 $ ) — the number of elements in each permutation and the number of elements in $ x $ .
The second line of the input contains $ m $ integers ( $ m $ , not $ n $ ) $ x_1, x_2, \dots, x_m $ ( $ 1 \le x_i \le n $ ), where $ x_i $ is the $ i $ -th element of $ x $ . Elements of $ x $ can repeat and appear in arbitrary order.
Output Format
Print $ n $ integers: $ f(p_1(n)), f(p_2(n)), \dots, f(p_n(n)) $ .
Explanation/Hint
Consider the first example:
$ x = [1, 2, 3, 4] $ , so
- for the permutation $ p_1(4) = [1, 2, 3, 4] $ the answer is $ |1 - 2| + |2 - 3| + |3 - 4| = 3 $ ;
- for the permutation $ p_2(4) = [2, 1, 3, 4] $ the answer is $ |2 - 1| + |1 - 3| + |3 - 4| = 4 $ ;
- for the permutation $ p_3(4) = [3, 1, 2, 4] $ the answer is $ |2 - 3| + |3 - 1| + |1 - 4| = 6 $ ;
- for the permutation $ p_4(4) = [4, 1, 2, 3] $ the answer is $ |2 - 3| + |3 - 4| + |4 - 1| = 5 $ .
Consider the second example:
$ x = [2, 1, 5, 3, 5] $ , so
- for the permutation $ p_1(5) = [1, 2, 3, 4, 5] $ the answer is $ |2 - 1| + |1 - 5| + |5 - 3| + |3 - 5| = 9 $ ;
- for the permutation $ p_2(5) = [2, 1, 3, 4, 5] $ the answer is $ |1 - 2| + |2 - 5| + |5 - 3| + |3 - 5| = 8 $ ;
- for the permutation $ p_3(5) = [3, 1, 2, 4, 5] $ the answer is $ |3 - 2| + |2 - 5| + |5 - 1| + |1 - 5| = 12 $ ;
- for the permutation $ p_4(5) = [4, 1, 2, 3, 5] $ the answer is $ |3 - 2| + |2 - 5| + |5 - 4| + |4 - 5| = 6 $ ;
- for the permutation $ p_5(5) = [5, 1, 2, 3, 4] $ the answer is $ |3 - 2| + |2 - 1| + |1 - 4| + |4 - 1| = 8 $ .