CF1256A Payment Without Change

Description

You have $ a $ coins of value $ n $ and $ b $ coins of value $ 1 $ . You always pay in exact change, so you want to know if there exist such $ x $ and $ y $ that if you take $ x $ ( $ 0 \le x \le a $ ) coins of value $ n $ and $ y $ ( $ 0 \le y \le b $ ) coins of value $ 1 $ , then the total value of taken coins will be $ S $ . You have to answer $ q $ independent test cases.

Input Format

The first line of the input contains one integer $ q $ ( $ 1 \le q \le 10^4 $ ) — the number of test cases. Then $ q $ test cases follow. The only line of the test case contains four integers $ a $ , $ b $ , $ n $ and $ S $ ( $ 1 \le a, b, n, S \le 10^9 $ ) — the number of coins of value $ n $ , the number of coins of value $ 1 $ , the value $ n $ and the required total value.

Output Format

For the $ i $ -th test case print the answer on it — YES (without quotes) if there exist such $ x $ and $ y $ that if you take $ x $ coins of value $ n $ and $ y $ coins of value $ 1 $ , then the total value of taken coins will be $ S $ , and NO otherwise. You may print every letter in any case you want (so, for example, the strings yEs, yes, Yes and YES will all be recognized as positive answer).