CF1265B Beautiful Numbers
Description
You are given a permutation $ p=[p_1, p_2, \ldots, p_n] $ of integers from $ 1 $ to $ n $ . Let's call the number $ m $ ( $ 1 \le m \le n $ ) beautiful, if there exists two indices $ l, r $ ( $ 1 \le l \le r \le n $ ), such that the numbers $ [p_l, p_{l+1}, \ldots, p_r] $ is a permutation of numbers $ 1, 2, \ldots, m $ .
For example, let $ p = [4, 5, 1, 3, 2, 6] $ . In this case, the numbers $ 1, 3, 5, 6 $ are beautiful and $ 2, 4 $ are not. It is because:
- if $ l = 3 $ and $ r = 3 $ we will have a permutation $ [1] $ for $ m = 1 $ ;
- if $ l = 3 $ and $ r = 5 $ we will have a permutation $ [1, 3, 2] $ for $ m = 3 $ ;
- if $ l = 1 $ and $ r = 5 $ we will have a permutation $ [4, 5, 1, 3, 2] $ for $ m = 5 $ ;
- if $ l = 1 $ and $ r = 6 $ we will have a permutation $ [4, 5, 1, 3, 2, 6] $ for $ m = 6 $ ;
- it is impossible to take some $ l $ and $ r $ , such that $ [p_l, p_{l+1}, \ldots, p_r] $ is a permutation of numbers $ 1, 2, \ldots, m $ for $ m = 2 $ and for $ m = 4 $ .
You are given a permutation $ p=[p_1, p_2, \ldots, p_n] $ . For all $ m $ ( $ 1 \le m \le n $ ) determine if it is a beautiful number or not.
Input Format
The first line contains the only integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases in the input. The next lines contain the description of test cases.
The first line of a test case contains a number $ n $ ( $ 1 \le n \le 2 \cdot 10^5 $ ) — the length of the given permutation $ p $ . The next line contains $ n $ integers $ p_1, p_2, \ldots, p_n $ ( $ 1 \le p_i \le n $ , all $ p_i $ are different) — the given permutation $ p $ .
It is guaranteed, that the sum of $ n $ from all test cases in the input doesn't exceed $ 2 \cdot 10^5 $ .
Output Format
Print $ t $ lines — the answers to test cases in the order they are given in the input.
The answer to a test case is the string of length $ n $ , there the $ i $ -th character is equal to $ 1 $ if $ i $ is a beautiful number and is equal to $ 0 $ if $ i $ is not a beautiful number.
Explanation/Hint
The first test case is described in the problem statement.
In the second test case all numbers from $ 1 $ to $ 5 $ are beautiful:
- if $ l = 3 $ and $ r = 3 $ we will have a permutation $ [1] $ for $ m = 1 $ ;
- if $ l = 3 $ and $ r = 4 $ we will have a permutation $ [1, 2] $ for $ m = 2 $ ;
- if $ l = 2 $ and $ r = 4 $ we will have a permutation $ [3, 1, 2] $ for $ m = 3 $ ;
- if $ l = 2 $ and $ r = 5 $ we will have a permutation $ [3, 1, 2, 4] $ for $ m = 4 $ ;
- if $ l = 1 $ and $ r = 5 $ we will have a permutation $ [5, 3, 1, 2, 4] $ for $ m = 5 $ .