CF1269A Equation
Description
Let's call a positive integer composite if it has at least one divisor other than $ 1 $ and itself. For example:
- the following numbers are composite: $ 1024 $ , $ 4 $ , $ 6 $ , $ 9 $ ;
- the following numbers are not composite: $ 13 $ , $ 1 $ , $ 2 $ , $ 3 $ , $ 37 $ .
You are given a positive integer $ n $ . Find two composite integers $ a,b $ such that $ a-b=n $ .
It can be proven that solution always exists.
Input Format
The input contains one integer $ n $ ( $ 1 \leq n \leq 10^7 $ ): the given integer.
Output Format
Print two composite integers $ a,b $ ( $ 2 \leq a, b \leq 10^9, a-b=n $ ).
It can be proven, that solution always exists.
If there are several possible solutions, you can print any.