CF1275D Storage2
Description
Для надежного, но компактного хранения картинок во ВКонтакте используются избыточные коды. Все картинки разбиваются на группы по 15, и для каждой группы картинок вычисляются 13 избыточных кодов. Избыточные коды необходимы, чтобы суметь восстановить некоторые картинки, если они будут утеряны вследствие поломки жесткого диска.
Перед вычислением избыточных кодов 15 картинок из одной группы записываются в матрицу из 3 строк и 5 столбцов. Далее к получившейся матрице справа добавляются два столбца с 6 избыточными кодами (каждая пара кодов вычисляется на основе картинок в той же строке), а затем снизу добавляется еще одна строка из 7 избыточных кодов (каждый из них считается на основе картинок или избыточных кодов в том же столбце).
Будем называть картинки и избыточные коды блоками. Таким образом, из 15 картинок мы получили 28 блоков, расставленных в виде матрицы 4 на 7. В данной задаче вам не будут даны формулы вычисления избыточных кодов, но даны их свойства: а именно по 3 любым блокам из одного столбца можно однозначно восстановить утерянный четвертый блок в том же столбце, а также по 5 любым блокам из одной строки можно однозначно восстановить оставшиеся два из той же строки, если они были утеряны. Естественно, операцию восстановления можно применять несколько раз к разным строкам и столбцам в любом порядке, а также в следующих операциях использовать блоки, восстановленные ранее.
Пусть у вас есть 28 блоков (15 картинок и 13 избыточных кодов), и вы потеряли случайные $ k $ из них (равновероятно среди всех вариантов). Ваша задача посчитать вероятность, что хотя бы одну из 15 картинок будет невозможно восстановить, а также матожидание количества потерянных картинок.
Input Format
В единственной строке входных данных записано целое число $ k $ ( $ 0 \le k \le 28 $ ) — количество потерянных блоков.
Output Format
Выведите два числа — вероятность, что хотя бы одну картинку невозможно восстановить из оставшихся блоков, и матожидание количества картинок, которые невозможно восстановить из оставшихся блоков.
Ответы будут считаться корректными, если их абсолютная или относительная погрешность не превосходит $ 10^{-9} $ .