Classical?

题意翻译

有n个整数a[1],a[2],a[3]...a[n],求max(LCM(a[i],a[j])) (1≤i,j≤n) 注:LCM(x,y)即求x,y的最小公倍数

题目描述

Given an array $ a $ , consisting of $ n $ integers, find: $ $$$\max\limits_{1 \le i < j \le n} LCM(a_i,a_j), $ $ </p><p>where $ LCM(x, y) $ is the smallest positive integer that is divisible by both $ x $ and $ y $ . For example, $ LCM(6, 8) = 24 $ , $ LCM(4, 12) = 12 $ , $ LCM(2, 3) = 6$$$.

输入输出格式

输入格式


The first line contains an integer $ n $ ( $ 2 \le n \le 10^5 $ ) — the number of elements in the array $ a $ . The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 1 \le a_i \le 10^5 $ ) — the elements of the array $ a $ .

输出格式


Print one integer, the maximum value of the least common multiple of two elements in the array $ a $ .

输入输出样例

输入样例 #1

3
13 35 77

输出样例 #1

1001

输入样例 #2

6
1 2 4 8 16 32

输出样例 #2

32