CF1288B Yet Another Meme Problem

Description

Try guessing the statement from this picture . You are given two integers $ A $ and $ B $ , calculate the number of pairs $ (a, b) $ such that $ 1 \le a \le A $ , $ 1 \le b \le B $ , and the equation $ a \cdot b + a + b = conc(a, b) $ is true; $ conc(a, b) $ is the concatenation of $ a $ and $ b $ (for example, $ conc(12, 23) = 1223 $ , $ conc(100, 11) = 10011 $ ). $ a $ and $ b $ should not contain leading zeroes.

Input Format

The first line contains $ t $ ( $ 1 \le t \le 100 $ ) — the number of test cases. Each test case contains two integers $ A $ and $ B $ $ (1 \le A, B \le 10^9) $ .

Output Format

Print one integer — the number of pairs $ (a, b) $ such that $ 1 \le a \le A $ , $ 1 \le b \le B $ , and the equation $ a \cdot b + a + b = conc(a, b) $ is true.

Explanation/Hint

There is only one suitable pair in the first test case: $ a = 1 $ , $ b = 9 $ ( $ 1 + 9 + 1 \cdot 9 = 19 $ ).