CF1288D Minimax Problem

Description

You are given $ n $ arrays $ a_1 $ , $ a_2 $ , ..., $ a_n $ ; each array consists of exactly $ m $ integers. We denote the $ y $ -th element of the $ x $ -th array as $ a_{x, y} $ . You have to choose two arrays $ a_i $ and $ a_j $ ( $ 1 \le i, j \le n $ , it is possible that $ i = j $ ). After that, you will obtain a new array $ b $ consisting of $ m $ integers, such that for every $ k \in [1, m] $ $ b_k = \max(a_{i, k}, a_{j, k}) $ . Your goal is to choose $ i $ and $ j $ so that the value of $ \min \limits_{k = 1}^{m} b_k $ is maximum possible.

Input Format

The first line contains two integers $ n $ and $ m $ ( $ 1 \le n \le 3 \cdot 10^5 $ , $ 1 \le m \le 8 $ ) — the number of arrays and the number of elements in each array, respectively. Then $ n $ lines follow, the $ x $ -th line contains the array $ a_x $ represented by $ m $ integers $ a_{x, 1} $ , $ a_{x, 2} $ , ..., $ a_{x, m} $ ( $ 0 \le a_{x, y} \le 10^9 $ ).

Output Format

Print two integers $ i $ and $ j $ ( $ 1 \le i, j \le n $ , it is possible that $ i = j $ ) — the indices of the two arrays you have to choose so that the value of $ \min \limits_{k = 1}^{m} b_k $ is maximum possible. If there are multiple answers, print any of them.