CF1292D Chaotic V.
题目描述
设$x$是大于$1$的正整数,定义$f(x)$为$x$的最小质因子的值。
现在考虑构造一棵树$T$。其中节点均用从$1$开始的正整数编号,对于任意大于$1$的正整数$x$,节点$x$在树上的父亲是$\frac{x}{f(x)}$。
在这棵树上有$n$个关键节点,很特别地,这$n$个节点的编号均可以表示成一个非负整数的阶乘。更具体地,第$i$个节点$P_i$的编号为$k_i!=\prod_{j=1}^{k_i}j$。
定义$\text{DIS}(i,j)$表示树上$i,j$两点间最短路所包含的边数。现在你找出树上的一个节点$P$,最小化$\sum_{i=1}^n\text{DIS}(P,P_i)$的值。你只需要输出这个最小值即可。
输入格式
第一行一个正整数$n(1\leq n\leq 10^6)$,代表节点数。
第二行$n$个非负整数$k_i(0\leq k_i\leq 5\times 10^3)$,描述节点$P_i$的编号为$k_i!$。
输出格式
一行一个非负整数表示答案。
说明/提示
Considering the first $ 24 $ nodes of the system, the node network will look as follows (the nodes $ 1! $ , $ 2! $ , $ 3! $ , $ 4! $ are drawn bold):

For the first example, Ivy will place the emotion samples at the node $ 1 $ . From here:
- The distance from Vanessa's first fragment to the node $ 1 $ is $ 1 $ .
- The distance from Vanessa's second fragment to the node $ 1 $ is $ 0 $ .
- The distance from Vanessa's third fragment to the node $ 1 $ is $ 4 $ .
The total length is $ 5 $ .
For the second example, the assembly node will be $ 6 $ . From here:
- The distance from Vanessa's first fragment to the node $ 6 $ is $ 0 $ .
- The distance from Vanessa's second fragment to the node $ 6 $ is $ 2 $ .
- The distance from Vanessa's third fragment to the node $ 6 $ is $ 2 $ .
- The distance from Vanessa's fourth fragment to the node $ 6 $ is again $ 2 $ .
The total path length is $ 6 $ .