CF1311F Moving Points

Description

There are $ n $ points on a coordinate axis $ OX $ . The $ i $ -th point is located at the integer point $ x_i $ and has a speed $ v_i $ . It is guaranteed that no two points occupy the same coordinate. All $ n $ points move with the constant speed, the coordinate of the $ i $ -th point at the moment $ t $ ( $ t $ can be non-integer) is calculated as $ x_i + t \cdot v_i $ . Consider two points $ i $ and $ j $ . Let $ d(i, j) $ be the minimum possible distance between these two points over any possible moments of time (even non-integer). It means that if two points $ i $ and $ j $ coincide at some moment, the value $ d(i, j) $ will be $ 0 $ . Your task is to calculate the value $ \sum\limits_{1 \le i < j \le n} $ $ d(i, j) $ (the sum of minimum distances over all pairs of points).

Input Format

The first line of the input contains one integer $ n $ ( $ 2 \le n \le 2 \cdot 10^5 $ ) — the number of points. The second line of the input contains $ n $ integers $ x_1, x_2, \dots, x_n $ ( $ 1 \le x_i \le 10^8 $ ), where $ x_i $ is the initial coordinate of the $ i $ -th point. It is guaranteed that all $ x_i $ are distinct. The third line of the input contains $ n $ integers $ v_1, v_2, \dots, v_n $ ( $ -10^8 \le v_i \le 10^8 $ ), where $ v_i $ is the speed of the $ i $ -th point.

Output Format

Print one integer — the value $ \sum\limits_{1 \le i < j \le n} $ $ d(i, j) $ (the sum of minimum distances over all pairs of points).