CF1326A Bad Ugly Numbers

Description

You are given a integer $ n $ ( $ n > 0 $ ). Find any integer $ s $ which satisfies these conditions, or report that there are no such numbers: In the decimal representation of $ s $ : - $ s > 0 $ , - $ s $ consists of $ n $ digits, - no digit in $ s $ equals $ 0 $ , - $ s $ is not divisible by any of it's digits.

Input Format

The input consists of multiple test cases. The first line of the input contains a single integer $ t $ ( $ 1 \leq t \leq 400 $ ), the number of test cases. The next $ t $ lines each describe a test case. Each test case contains one positive integer $ n $ ( $ 1 \leq n \leq 10^5 $ ). It is guaranteed that the sum of $ n $ for all test cases does not exceed $ 10^5 $ .

Output Format

For each test case, print an integer $ s $ which satisfies the conditions described above, or "-1" (without quotes), if no such number exists. If there are multiple possible solutions for $ s $ , print any solution.

Explanation/Hint

In the first test case, there are no possible solutions for $ s $ consisting of one digit, because any such solution is divisible by itself. For the second test case, the possible solutions are: $ 23 $ , $ 27 $ , $ 29 $ , $ 34 $ , $ 37 $ , $ 38 $ , $ 43 $ , $ 46 $ , $ 47 $ , $ 49 $ , $ 53 $ , $ 54 $ , $ 56 $ , $ 57 $ , $ 58 $ , $ 59 $ , $ 67 $ , $ 68 $ , $ 69 $ , $ 73 $ , $ 74 $ , $ 76 $ , $ 78 $ , $ 79 $ , $ 83 $ , $ 86 $ , $ 87 $ , $ 89 $ , $ 94 $ , $ 97 $ , and $ 98 $ . For the third test case, one possible solution is $ 239 $ because $ 239 $ is not divisible by $ 2 $ , $ 3 $ or $ 9 $ and has three digits (none of which equals zero).