Count Triangles
题意翻译
### 题目描述
给出四个整数$A,B,C,D$ ,其中$1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5$
求三边长分别为 $x,y,z$ 并且满足 $A \leq x \leq B \leq y \leq C \leq z \leq D$ 的非退化三角形(三顶点不共线)的个数
### 输入格式
一行四个整数: $A,B,C,D$。
### 输出格式
一行,输出满足条件的三角形个数。
题目描述
Like any unknown mathematician, Yuri has favourite numbers: $ A $ , $ B $ , $ C $ , and $ D $ , where $ A \leq B \leq C \leq D $ . Yuri also likes triangles and once he thought: how many non-degenerate triangles with integer sides $ x $ , $ y $ , and $ z $ exist, such that $ A \leq x \leq B \leq y \leq C \leq z \leq D $ holds?
Yuri is preparing problems for a new contest now, so he is very busy. That's why he asked you to calculate the number of triangles with described property.
The triangle is called non-degenerate if and only if its vertices are not collinear.
输入输出格式
输入格式
The first line contains four integers: $ A $ , $ B $ , $ C $ and $ D $ ( $ 1 \leq A \leq B \leq C \leq D \leq 5 \cdot 10^5 $ ) — Yuri's favourite numbers.
输出格式
Print the number of non-degenerate triangles with integer sides $ x $ , $ y $ , and $ z $ such that the inequality $ A \leq x \leq B \leq y \leq C \leq z \leq D $ holds.
输入输出样例
输入样例 #1
1 2 3 4
输出样例 #1
4
输入样例 #2
1 2 2 5
输出样例 #2
3
输入样例 #3
500000 500000 500000 500000
输出样例 #3
1
说明
In the first example Yuri can make up triangles with sides $ (1, 3, 3) $ , $ (2, 2, 3) $ , $ (2, 3, 3) $ and $ (2, 3, 4) $ .
In the second example Yuri can make up triangles with sides $ (1, 2, 2) $ , $ (2, 2, 2) $ and $ (2, 2, 3) $ .
In the third example Yuri can make up only one equilateral triangle with sides equal to $ 5 \cdot 10^5 $ .