CF1365F Swaps Again
Description
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $ n $ and two arrays $ a $ and $ b $ , of size $ n $ . If after some (possibly zero) operations described below, array $ a $ can be transformed into array $ b $ , the input is said to be valid. Otherwise, it is invalid.
An operation on array $ a $ is:
- select an integer $ k $ $ (1 \le k \le \lfloor\frac{n}{2}\rfloor) $
- swap the prefix of length $ k $ with the suffix of length $ k $
For example, if array $ a $ initially is $ \{1, 2, 3, 4, 5, 6\} $ , after performing an operation with $ k = 2 $ , it is transformed into $ \{5, 6, 3, 4, 1, 2\} $ .
Given the set of test cases, help them determine if each one is valid or invalid.
Input Format
The first line contains one integer $ t $ $ (1 \le t \le 500) $ — the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $ n $ $ (1 \le n \le 500) $ — the size of the arrays.
The second line of each test case contains $ n $ integers $ a_1 $ , $ a_2 $ , ..., $ a_n $ $ (1 \le a_i \le 10^9) $ — elements of array $ a $ .
The third line of each test case contains $ n $ integers $ b_1 $ , $ b_2 $ , ..., $ b_n $ $ (1 \le b_i \le 10^9) $ — elements of array $ b $ .
Output Format
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
Explanation/Hint
For the first test case, we can swap prefix $ a[1:1] $ with suffix $ a[2:2] $ to get $ a=[2, 1] $ .
For the second test case, $ a $ is already equal to $ b $ .
For the third test case, it is impossible since we cannot obtain $ 3 $ in $ a $ .
For the fourth test case, we can first swap prefix $ a[1:1] $ with suffix $ a[4:4] $ to obtain $ a=[2, 2, 3, 1] $ . Now we can swap prefix $ a[1:2] $ with suffix $ a[3:4] $ to obtain $ a=[3, 1, 2, 2] $ .
For the fifth test case, it is impossible to convert $ a $ to $ b $ .