CF1373E Sum of Digits
Description
Let $ f(x) $ be the sum of digits of a decimal number $ x $ .
Find the smallest non-negative integer $ x $ such that $ f(x) + f(x + 1) + \dots + f(x + k) = n $ .
Input Format
The first line contains one integer $ t $ ( $ 1 \le t \le 150 $ ) — the number of test cases.
Each test case consists of one line containing two integers $ n $ and $ k $ ( $ 1 \le n \le 150 $ , $ 0 \le k \le 9 $ ).
Output Format
For each test case, print one integer without leading zeroes. If there is no such $ x $ that $ f(x) + f(x + 1) + \dots + f(x + k) = n $ , print $ -1 $ ; otherwise, print the minimum $ x $ meeting that constraint.