CF1380A Three Indices
Description
You are given a permutation $ p_1, p_2, \dots, p_n $ . Recall that sequence of $ n $ integers is called a permutation if it contains all integers from $ 1 $ to $ n $ exactly once.
Find three indices $ i $ , $ j $ and $ k $ such that:
- $ 1 \le i < j < k \le n $ ;
- $ p_i < p_j $ and $ p_j > p_k $ .
Or say that there are no such indices.
Input Format
The first line contains a single integer $ T $ ( $ 1 \le T \le 200 $ ) — the number of test cases.
Next $ 2T $ lines contain test cases — two lines per test case. The first line of each test case contains the single integer $ n $ ( $ 3 \le n \le 1000 $ ) — the length of the permutation $ p $ .
The second line contains $ n $ integers $ p_1, p_2, \dots, p_n $ ( $ 1 \le p_i \le n $ ; $ p_i \neq p_j $ if $ i \neq j $ ) — the permutation $ p $ .
Output Format
For each test case:
- if there are such indices $ i $ , $ j $ and $ k $ , print YES (case insensitive) and the indices themselves;
- if there are no such indices, print NO (case insensitive).
If there are multiple valid triples of indices, print any of them.