CF1383D Rearrange

Description

Koa the Koala has a matrix $ A $ of $ n $ rows and $ m $ columns. Elements of this matrix are distinct integers from $ 1 $ to $ n \cdot m $ (each number from $ 1 $ to $ n \cdot m $ appears exactly once in the matrix). For any matrix $ M $ of $ n $ rows and $ m $ columns let's define the following: - The $ i $ -th row of $ M $ is defined as $ R_i(M) = [ M_{i1}, M_{i2}, \ldots, M_{im} ] $ for all $ i $ ( $ 1 \le i \le n $ ). - The $ j $ -th column of $ M $ is defined as $ C_j(M) = [ M_{1j}, M_{2j}, \ldots, M_{nj} ] $ for all $ j $ ( $ 1 \le j \le m $ ). Koa defines $ S(A) = (X, Y) $ as the spectrum of $ A $ , where $ X $ is the set of the maximum values in rows of $ A $ and $ Y $ is the set of the maximum values in columns of $ A $ . More formally: - $ X = \{ \max(R_1(A)), \max(R_2(A)), \ldots, \max(R_n(A)) \} $ - $ Y = \{ \max(C_1(A)), \max(C_2(A)), \ldots, \max(C_m(A)) \} $ Koa asks you to find some matrix $ A' $ of $ n $ rows and $ m $ columns, such that each number from $ 1 $ to $ n \cdot m $ appears exactly once in the matrix, and the following conditions hold: - $ S(A') = S(A) $ - $ R_i(A') $ is bitonic for all $ i $ ( $ 1 \le i \le n $ ) - $ C_j(A') $ is bitonic for all $ j $ ( $ 1 \le j \le m $ ) An array $ t $ ( $ t_1, t_2, \ldots, t_k $ ) is called bitonic if it first increases and then decreases. More formally: $ t $ is bitonic if there exists some position $ p $ ( $ 1 \le p \le k $ ) such that: $ t_1 < t_2 < \ldots < t_p > t_{p+1} > \ldots > t_k $ . Help Koa to find such matrix or to determine that it doesn't exist.

Input Format

The first line of the input contains two integers $ n $ and $ m $ ( $ 1 \le n, m \le 250 $ ) — the number of rows and columns of $ A $ . Each of the ollowing $ n $ lines contains $ m $ integers. The $ j $ -th integer in the $ i $ -th line denotes element $ A_{ij} $ ( $ 1 \le A_{ij} \le n \cdot m $ ) of matrix $ A $ . It is guaranteed that every number from $ 1 $ to $ n \cdot m $ appears exactly once among elements of the matrix.

Output Format

If such matrix doesn't exist, print $ -1 $ on a single line. Otherwise, the output must consist of $ n $ lines, each one consisting of $ m $ space separated integers — a description of $ A' $ . The $ j $ -th number in the $ i $ -th line represents the element $ A'_{ij} $ . Every integer from $ 1 $ to $ n \cdot m $ should appear exactly once in $ A' $ , every row and column in $ A' $ must be bitonic and $ S(A) = S(A') $ must hold. If there are many answers print any.

Explanation/Hint

Let's analyze the first sample: For matrix $ A $ we have: - Rows: - $ R_1(A) = [3, 5, 6]; \max(R_1(A)) = 6 $ - $ R_2(A) = [1, 7, 9]; \max(R_2(A)) = 9 $ - $ R_3(A) = [4, 8, 2]; \max(R_3(A)) = 8 $ - Columns: - $ C_1(A) = [3, 1, 4]; \max(C_1(A)) = 4 $ - $ C_2(A) = [5, 7, 8]; \max(C_2(A)) = 8 $ - $ C_3(A) = [6, 9, 2]; \max(C_3(A)) = 9 $ - $ X = \{ \max(R_1(A)), \max(R_2(A)), \max(R_3(A)) \} = \{ 6, 9, 8 \} $ - $ Y = \{ \max(C_1(A)), \max(C_2(A)), \max(C_3(A)) \} = \{ 4, 8, 9 \} $ - So $ S(A) = (X, Y) = (\{ 6, 9, 8 \}, \{ 4, 8, 9 \}) $ For matrix $ A' $ we have: - Rows: - $ R_1(A') = [9, 5, 1]; \max(R_1(A')) = 9 $ - $ R_2(A') = [7, 8, 2]; \max(R_2(A')) = 8 $ - $ R_3(A') = [3, 6, 4]; \max(R_3(A')) = 6 $ - Columns: - $ C_1(A') = [9, 7, 3]; \max(C_1(A')) = 9 $ - $ C_2(A') = [5, 8, 6]; \max(C_2(A')) = 8 $ - $ C_3(A') = [1, 2, 4]; \max(C_3(A')) = 4 $ - Note that each of this arrays are bitonic. - $ X = \{ \max(R_1(A')), \max(R_2(A')), \max(R_3(A')) \} = \{ 9, 8, 6 \} $ - $ Y = \{ \max(C_1(A')), \max(C_2(A')), \max(C_3(A')) \} = \{ 9, 8, 4 \} $ - So $ S(A') = (X, Y) = (\{ 9, 8, 6 \}, \{ 9, 8, 4 \}) $