CF1392B Omkar and Infinity Clock
Description
Being stuck at home, Ray became extremely bored. To pass time, he asks Lord Omkar to use his time bending power: Infinity Clock! However, Lord Omkar will only listen to mortals who can solve the following problem:
You are given an array $ a $ of $ n $ integers. You are also given an integer $ k $ . Lord Omkar wants you to do $ k $ operations with this array.
Define one operation as the following:
1. Set $ d $ to be the maximum value of your array.
2. For every $ i $ from $ 1 $ to $ n $ , replace $ a_{i} $ with $ d-a_{i} $ .
The goal is to predict the contents in the array after $ k $ operations. Please help Ray determine what the final sequence will look like!
Input Format
Each test contains multiple test cases. The first line contains the number of cases $ t $ ( $ 1 \le t \le 100 $ ). Description of the test cases follows.
The first line of each test case contains two integers $ n $ and $ k $ ( $ 1 \leq n \leq 2 \cdot 10^5, 1 \leq k \leq 10^{18} $ ) – the length of your array and the number of operations to perform.
The second line of each test case contains $ n $ integers $ a_{1},a_{2},...,a_{n} $ $ (-10^9 \leq a_{i} \leq 10^9) $ – the initial contents of your array.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each case, print the final version of array $ a $ after $ k $ operations described above.
Explanation/Hint
In the first test case the array changes as follows:
- Initially, the array is $ [-199, 192] $ . $ d = 192 $ .
- After the operation, the array becomes $ [d-(-199), d-192] = [391, 0] $ .