CF1392C Omkar and Waterslide
Description
Omkar is building a waterslide in his water park, and he needs your help to ensure that he does it as efficiently as possible.
Omkar currently has $ n $ supports arranged in a line, the $ i $ -th of which has height $ a_i $ . Omkar wants to build his waterslide from the right to the left, so his supports must be nondecreasing in height in order to support the waterslide. In $ 1 $ operation, Omkar can do the following: take any contiguous subsegment of supports which is nondecreasing by heights and add $ 1 $ to each of their heights.
Help Omkar find the minimum number of operations he needs to perform to make his supports able to support his waterslide!
An array $ b $ is a subsegment of an array $ c $ if $ b $ can be obtained from $ c $ by deletion of several (possibly zero or all) elements from the beginning and several (possibly zero or all) elements from the end.
An array $ b_1, b_2, \dots, b_n $ is called nondecreasing if $ b_i\le b_{i+1} $ for every $ i $ from $ 1 $ to $ n-1 $ .
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \leq t \leq 100 $ ). Description of the test cases follows.
The first line of each test case contains an integer $ n $ ( $ 1 \leq n \leq 2 \cdot 10^5 $ ) — the number of supports Omkar has.
The second line of each test case contains $ n $ integers $ a_{1},a_{2},...,a_{n} $ $ (0 \leq a_{i} \leq 10^9) $ — the heights of the supports.
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 2 \cdot 10^5 $ .
Output Format
For each test case, output a single integer — the minimum number of operations Omkar needs to perform to make his supports able to support his waterslide.
Explanation/Hint
The subarray with which Omkar performs the operation is bolded.
In the first test case:
- First operation:
$ [5, 3, \textbf{2}, 5] \to [5, 3, \textbf{3}, 5] $
- Second operation:
$ [5, \textbf{3}, \textbf{3}, 5] \to [5, \textbf{4}, \textbf{4}, 5] $
- Third operation:
$ [5, \textbf{4}, \textbf{4}, 5] \to [5, \textbf{5}, \textbf{5}, 5] $
In the third test case, the array is already nondecreasing, so Omkar does $ 0 $ operations.