CF1397B Power Sequence

Description

Let's call a list of positive integers $ a_0, a_1, ..., a_{n-1} $ a power sequence if there is a positive integer $ c $ , so that for every $ 0 \le i \le n-1 $ then $ a_i = c^i $ . Given a list of $ n $ positive integers $ a_0, a_1, ..., a_{n-1} $ , you are allowed to: - Reorder the list (i.e. pick a permutation $ p $ of $ \{0,1,...,n - 1\} $ and change $ a_i $ to $ a_{p_i} $ ), then - Do the following operation any number of times: pick an index $ i $ and change $ a_i $ to $ a_i - 1 $ or $ a_i + 1 $ (i.e. increment or decrement $ a_i $ by $ 1 $ ) with a cost of $ 1 $ . Find the minimum cost to transform $ a_0, a_1, ..., a_{n-1} $ into a power sequence.

Input Format

The first line contains an integer $ n $ ( $ 3 \le n \le 10^5 $ ). The second line contains $ n $ integers $ a_0, a_1, ..., a_{n-1} $ ( $ 1 \le a_i \le 10^9 $ ).

Output Format

Print the minimum cost to transform $ a_0, a_1, ..., a_{n-1} $ into a power sequence.

Explanation/Hint

In the first example, we first reorder $ \{1, 3, 2\} $ into $ \{1, 2, 3\} $ , then increment $ a_2 $ to $ 4 $ with cost $ 1 $ to get a power sequence $ \{1, 2, 4\} $ .