CF1401F Reverse and Swap
Description
You are given an array $ a $ of length $ 2^n $ . You should process $ q $ queries on it. Each query has one of the following $ 4 $ types:
1. $ Replace(x, k) $ — change $ a_x $ to $ k $ ;
2. $ Reverse(k) $ — reverse each subarray $ [(i-1) \cdot 2^k+1, i \cdot 2^k] $ for all $ i $ ( $ i \ge 1 $ );
3. $ Swap(k) $ — swap subarrays $ [(2i-2) \cdot 2^k+1, (2i-1) \cdot 2^k] $ and $ [(2i-1) \cdot 2^k+1, 2i \cdot 2^k] $ for all $ i $ ( $ i \ge 1 $ );
4. $ Sum(l, r) $ — print the sum of the elements of subarray $ [l, r] $ .
Write a program that can quickly process given queries.
Input Format
The first line contains two integers $ n $ , $ q $ ( $ 0 \le n \le 18 $ ; $ 1 \le q \le 10^5 $ ) — the length of array $ a $ and the number of queries.
The second line contains $ 2^n $ integers $ a_1, a_2, \ldots, a_{2^n} $ ( $ 0 \le a_i \le 10^9 $ ).
Next $ q $ lines contains queries — one per line. Each query has one of $ 4 $ types:
- " $ 1 $ $ x $ $ k $ " ( $ 1 \le x \le 2^n $ ; $ 0 \le k \le 10^9 $ ) — $ Replace(x, k) $ ;
- " $ 2 $ $ k $ " ( $ 0 \le k \le n $ ) — $ Reverse(k) $ ;
- " $ 3 $ $ k $ " ( $ 0 \le k < n $ ) — $ Swap(k) $ ;
- " $ 4 $ $ l $ $ r $ " ( $ 1 \le l \le r \le 2^n $ ) — $ Sum(l, r) $ .
It is guaranteed that there is at least one $ Sum $ query.
Output Format
Print the answer for each $ Sum $ query.
Explanation/Hint
In the first sample, initially, the array $ a $ is equal to $ \{7,4,9,9\} $ .
After processing the first query. the array $ a $ becomes $ \{7,8,9,9\} $ .
After processing the second query, the array $ a_i $ becomes $ \{9,9,7,8\} $
Therefore, the answer to the third query is $ 9+7+8=24 $ .
In the second sample, initially, the array $ a $ is equal to $ \{7,0,8,8,7,1,5,2\} $ . What happens next is:
1. $ Sum(3, 7) $ $ \to $ $ 8 + 8 + 7 + 1 + 5 = 29 $ ;
2. $ Reverse(1) $ $ \to $ $ \{0,7,8,8,1,7,2,5\} $ ;
3. $ Swap(2) $ $ \to $ $ \{1,7,2,5,0,7,8,8\} $ ;
4. $ Sum(1, 6) $ $ \to $ $ 1 + 7 + 2 + 5 + 0 + 7 = 22 $ ;
5. $ Reverse(3) $ $ \to $ $ \{8,8,7,0,5,2,7,1\} $ ;
6. $ Replace(5, 16) $ $ \to $ $ \{8,8,7,0,16,2,7,1\} $ ;
7. $ Sum(8, 8) $ $ \to $ $ 1 $ ;
8. $ Swap(0) $ $ \to $ $ \{8,8,0,7,2,16,1,7\} $ .