CF1408A Circle Coloring
Description
You are given three sequences: $ a_1, a_2, \ldots, a_n $ ; $ b_1, b_2, \ldots, b_n $ ; $ c_1, c_2, \ldots, c_n $ .
For each $ i $ , $ a_i \neq b_i $ , $ a_i \neq c_i $ , $ b_i \neq c_i $ .
Find a sequence $ p_1, p_2, \ldots, p_n $ , that satisfy the following conditions:
- $ p_i \in \{a_i, b_i, c_i\} $
- $ p_i \neq p_{(i \mod n) + 1} $ .
In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements $ i,i+1 $ adjacent for $ i
Input Format
The first line of input contains one integer $ t $ ( $ 1 \leq t \leq 100 $ ): the number of test cases.
The first line of each test case contains one integer $ n $ ( $ 3 \leq n \leq 100 $ ): the number of elements in the given sequences.
The second line contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \leq a_i \leq 100 $ ).
The third line contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \leq b_i \leq 100 $ ).
The fourth line contains $ n $ integers $ c_1, c_2, \ldots, c_n $ ( $ 1 \leq c_i \leq 100 $ ).
It is guaranteed that $ a_i \neq b_i $ , $ a_i \neq c_i $ , $ b_i \neq c_i $ for all $ i $ .
Output Format
For each test case, print $ n $ integers: $ p_1, p_2, \ldots, p_n $ ( $ p_i \in \{a_i, b_i, c_i\} $ , $ p_i \neq p_{i \mod n + 1} $ ).
If there are several solutions, you can print any.
Explanation/Hint
In the first test case $ p = [1, 2, 3] $ .
It is a correct answer, because:
- $ p_1 = 1 = a_1 $ , $ p_2 = 2 = b_2 $ , $ p_3 = 3 = c_3 $
- $ p_1 \neq p_2 $ , $ p_2 \neq p_3 $ , $ p_3 \neq p_1 $
All possible correct answers to this test case are: $ [1, 2, 3] $ , $ [1, 3, 2] $ , $ [2, 1, 3] $ , $ [2, 3, 1] $ , $ [3, 1, 2] $ , $ [3, 2, 1] $ .
In the second test case $ p = [1, 2, 1, 2] $ .
In this sequence $ p_1 = a_1 $ , $ p_2 = a_2 $ , $ p_3 = a_3 $ , $ p_4 = a_4 $ . Also we can see, that no two adjacent elements of the sequence are equal.
In the third test case $ p = [1, 3, 4, 3, 2, 4, 2] $ .
In this sequence $ p_1 = a_1 $ , $ p_2 = a_2 $ , $ p_3 = b_3 $ , $ p_4 = b_4 $ , $ p_5 = b_5 $ , $ p_6 = c_6 $ , $ p_7 = c_7 $ . Also we can see, that no two adjacent elements of the sequence are equal.