CF1408I Bitwise Magic
Description
You are given a positive integer $ k $ and an array $ a_1, a_2, \ldots, a_n $ of non-negative distinct integers not smaller than $ k $ and not greater than $ 2^c-1 $ .
In each of the next $ k $ seconds, one element is chosen randomly equiprobably out of all $ n $ elements and decreased by $ 1 $ .
For each integer $ x $ , $ 0 \leq x \leq 2^c - 1 $ , you need to find the probability that in the end the bitwise XOR of all elements of the array is equal to $ x $ .
Each of these values can be represented as an irreducible fraction $ \frac{p}{q} $ , and you need to find the value of $ p \cdot q^{-1} $ modulo $ 998\,244\,353 $ .
Input Format
The first line of input contains three integers $ n, k, c $ ( $ 1 \leq n \leq (2^c - k) $ , $ 1 \leq k \leq 16 $ , $ 1 \leq c \leq 16 $ ).
The second line contains $ n $ distinct integers $ a_1, a_2, \ldots, a_n $ ( $ k \leq a_i \leq 2^c-1 $ ).
Output Format
Print $ 2^c $ integers: the probability that the bitwise XOR is equal to $ x $ in the end for $ x $ in $ \{0, 1, \ldots, 2^c-1\} $ modulo $ 998\,244\,353 $ .