Yet Another Two Integers Problem
题意翻译
给定两个整数$a,b$,每次可以把$a$变成$a+k$或$a-k$$(k\in [1,10])$,求需要多少次操作可以把$a$变成$b$
题目描述
You are given two integers $ a $ and $ b $ .
In one move, you can choose some integer $ k $ from $ 1 $ to $ 10 $ and add it to $ a $ or subtract it from $ a $ . In other words, you choose an integer $ k \in [1; 10] $ and perform $ a := a + k $ or $ a := a - k $ . You may use different values of $ k $ in different moves.
Your task is to find the minimum number of moves required to obtain $ b $ from $ a $ .
You have to answer $ t $ independent test cases.
输入输出格式
输入格式
The first line of the input contains one integer $ t $ ( $ 1 \le t \le 2 \cdot 10^4 $ ) — the number of test cases. Then $ t $ test cases follow.
The only line of the test case contains two integers $ a $ and $ b $ ( $ 1 \le a, b \le 10^9 $ ).
输出格式
For each test case, print the answer: the minimum number of moves required to obtain $ b $ from $ a $ .
输入输出样例
输入样例 #1
6
5 5
13 42
18 4
1337 420
123456789 1000000000
100500 9000
输出样例 #1
0
3
2
92
87654322
9150
说明
In the first test case of the example, you don't need to do anything.
In the second test case of the example, the following sequence of moves can be applied: $ 13 \rightarrow 23 \rightarrow 32 \rightarrow 42 $ (add $ 10 $ , add $ 9 $ , add $ 10 $ ).
In the third test case of the example, the following sequence of moves can be applied: $ 18 \rightarrow 10 \rightarrow 4 $ (subtract $ 8 $ , subtract $ 6 $ ).