CF1425C Captain of Knights

Description

Mr. Chanek just won the national chess tournament and got a huge chessboard of size $ N \times M $ . Bored with playing conventional chess, Mr. Chanek now defines a function $ F(X, Y) $ , which denotes the minimum number of moves to move a knight from square $ (1, 1) $ to square $ (X, Y) $ . It turns out finding $ F(X, Y) $ is too simple, so Mr. Chanek defines: $ G(X, Y) = \sum_{i=X}^{N} \sum_{j=Y}^{M} F(i, j) $ Given X and Y, you are tasked to find $ G(X, Y) $ . A knight can move from square $ (a, b) $ to square $ (a', b') $ if and only if $ |a - a'| > 0 $ , $ |b - b'| > 0 $ , and $ |a - a'| + |b - b'| = 3 $ . Of course, the knight cannot leave the chessboard.

Input Format

The first line contains an integer $ T $ $ (1 \le T \le 100) $ , the number of test cases. Each test case contains a line with four integers $ X $ $ Y $ $ N $ $ M $ $ (3 \leq X \leq N \leq 10^9, 3 \leq Y \leq M \leq 10^9) $ .

Output Format

For each test case, print a line with the value of $ G(X, Y) $ modulo $ 10^9 + 7 $ .