CF1455D Sequence and Swaps
Description
You are given a sequence $ a $ consisting of $ n $ integers $ a_1, a_2, \dots, a_n $ , and an integer $ x $ . Your task is to make the sequence $ a $ sorted (it is considered sorted if the condition $ a_1 \le a_2 \le a_3 \le \dots \le a_n $ holds).
To make the sequence sorted, you may perform the following operation any number of times you want (possibly zero): choose an integer $ i $ such that $ 1 \le i \le n $ and $ a_i > x $ , and swap the values of $ a_i $ and $ x $ .
For example, if $ a = [0, 2, 3, 5, 4] $ , $ x = 1 $ , the following sequence of operations is possible:
1. choose $ i = 2 $ (it is possible since $ a_2 > x $ ), then $ a = [0, 1, 3, 5, 4] $ , $ x = 2 $ ;
2. choose $ i = 3 $ (it is possible since $ a_3 > x $ ), then $ a = [0, 1, 2, 5, 4] $ , $ x = 3 $ ;
3. choose $ i = 4 $ (it is possible since $ a_4 > x $ ), then $ a = [0, 1, 2, 3, 4] $ , $ x = 5 $ .
Calculate the minimum number of operations you have to perform so that $ a $ becomes sorted, or report that it is impossible.
Input Format
The first line contains one integer $ t $ ( $ 1 \le t \le 500 $ ) — the number of test cases.
Each test case consists of two lines. The first line contains two integers $ n $ and $ x $ ( $ 1 \le n \le 500 $ , $ 0 \le x \le 500 $ ) — the number of elements in the sequence and the initial value of $ x $ .
The second line contains $ n $ integers $ a_1 $ , $ a_2 $ , ..., $ a_n $ ( $ 0 \le a_i \le 500 $ ).
The sum of values of $ n $ over all test cases in the input does not exceed $ 500 $ .
Output Format
For each test case, print one integer — the minimum number of operations you have to perform to make $ a $ sorted, or $ -1 $ , if it is impossible.