CF1458A Row GCD
Description
You are given two positive integer sequences $ a_1, \ldots, a_n $ and $ b_1, \ldots, b_m $ . For each $ j = 1, \ldots, m $ find the greatest common divisor of $ a_1 + b_j, \ldots, a_n + b_j $ .
Input Format
The first line contains two integers $ n $ and $ m $ ( $ 1 \leq n, m \leq 2 \cdot 10^5 $ ).
The second line contains $ n $ integers $ a_1, \ldots, a_n $ ( $ 1 \leq a_i \leq 10^{18}) $ .
The third line contains $ m $ integers $ b_1, \ldots, b_m $ ( $ 1 \leq b_j \leq 10^{18}) $ .
Output Format
Print $ m $ integers. The $ j $ -th of them should be equal to GCD $ (a_1 + b_j, \ldots, a_n + b_j) $ .