CF1475G Strange Beauty
Description
Polycarp found on the street an array $ a $ of $ n $ elements.
Polycarp invented his criterion for the beauty of an array. He calls an array $ a $ beautiful if at least one of the following conditions must be met for each different pair of indices $ i \ne j $ :
- $ a_i $ is divisible by $ a_j $ ;
- or $ a_j $ is divisible by $ a_i $ .
For example, if:
- $ n=5 $ and $ a=[7, 9, 3, 14, 63] $ , then the $ a $ array is not beautiful (for $ i=4 $ and $ j=2 $ , none of the conditions above is met);
- $ n=3 $ and $ a=[2, 14, 42] $ , then the $ a $ array is beautiful;
- $ n=4 $ and $ a=[45, 9, 3, 18] $ , then the $ a $ array is not beautiful (for $ i=1 $ and $ j=4 $ none of the conditions above is met);
Ugly arrays upset Polycarp, so he wants to remove some elements from the array $ a $ so that it becomes beautiful. Help Polycarp determine the smallest number of elements to remove to make the array $ a $ beautiful.
Input Format
The first line contains one integer $ t $ ( $ 1 \leq t \leq 10 $ ) — the number of test cases. Then $ t $ test cases follow.
The first line of each test case contains one integer $ n $ ( $ 1 \leq n \leq 2 \cdot 10^5 $ ) — the length of the array $ a $ .
The second line of each test case contains $ n $ numbers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 2 \cdot 10^5 $ ) — elements of the array $ a $ .
Output Format
For each test case output one integer — the minimum number of elements that must be removed to make the array $ a $ beautiful.
Explanation/Hint
In the first test case, removing $ 7 $ and $ 14 $ will make array $ a $ beautiful.
In the second test case, the array $ a $ is already beautiful.
In the third test case, removing one of the elements $ 45 $ or $ 18 $ will make the array $ a $ beautiful.
In the fourth test case, the array $ a $ is beautiful.