CF1476A K-divisible Sum

Description

You are given two integers $ n $ and $ k $ . You should create an array of $ n $ positive integers $ a_1, a_2, \dots, a_n $ such that the sum $ (a_1 + a_2 + \dots + a_n) $ is divisible by $ k $ and maximum element in $ a $ is minimum possible. What is the minimum possible maximum element in $ a $ ?

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 1000 $ ) — the number of test cases. The first and only line of each test case contains two integers $ n $ and $ k $ ( $ 1 \le n \le 10^9 $ ; $ 1 \le k \le 10^9 $ ).

Output Format

For each test case, print one integer — the minimum possible maximum element in array $ a $ such that the sum $ (a_1 + \dots + a_n) $ is divisible by $ k $ .

Explanation/Hint

In the first test case $ n = 1 $ , so the array consists of one element $ a_1 $ and if we make $ a_1 = 5 $ it will be divisible by $ k = 5 $ and the minimum possible. In the second test case, we can create array $ a = [1, 2, 1, 2] $ . The sum is divisible by $ k = 3 $ and the maximum is equal to $ 2 $ . In the third test case, we can create array $ a = [1, 1, 1, 1, 1, 1, 1, 1] $ . The sum is divisible by $ k = 8 $ and the maximum is equal to $ 1 $ .