CF1478C Nezzar and Symmetric Array

Description

Long time ago there was a symmetric array $ a_1,a_2,\ldots,a_{2n} $ consisting of $ 2n $ distinct integers. Array $ a_1,a_2,\ldots,a_{2n} $ is called symmetric if for each integer $ 1 \le i \le 2n $ , there exists an integer $ 1 \le j \le 2n $ such that $ a_i = -a_j $ . For each integer $ 1 \le i \le 2n $ , Nezzar wrote down an integer $ d_i $ equal to the sum of absolute differences from $ a_i $ to all integers in $ a $ , i. e. $ d_i = \sum_{j = 1}^{2n} {|a_i - a_j|} $ . Now a million years has passed and Nezzar can barely remember the array $ d $ and totally forget $ a $ . Nezzar wonders if there exists any symmetric array $ a $ consisting of $ 2n $ distinct integers that generates the array $ d $ .

Input Format

The first line contains a single integer $ t $ ( $ 1 \le t \le 10^5 $ ) — the number of test cases. The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^5 $ ). The second line of each test case contains $ 2n $ integers $ d_1, d_2, \ldots, d_{2n} $ ( $ 0 \le d_i \le 10^{12} $ ). It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .

Output Format

For each test case, print "YES" in a single line if there exists a possible array $ a $ . Otherwise, print "NO". You can print letters in any case (upper or lower).

Explanation/Hint

In the first test case, $ a=[1,-3,-1,3] $ is one possible symmetric array that generates the array $ d=[8,12,8,12] $ . In the second test case, it can be shown that there is no symmetric array consisting of distinct integers that can generate array $ d $ .