CF147B Smile House
题目描述
n个点,m条边,无向图但一条无向边的两个方向的边权不同,求图上最小正环的大小(定义正环为从一个点出发再回到这个点经过所有边边权之和为正)(定义最小正环的含义为这个正环经过的点数最少)
输入格式
第一行两个整数n,m,表示点数和边数
接下来m行,一行四个整数x,y,z,w,表示x到y有一条边,x到y的边权为z,y到x的边权为w
输出格式
一行一个整数,表示最小正环的大小(即这个正环上点的个数),如果没有正环输出0
说明/提示
Cycle is such a sequence of rooms $ a_{1} $ , $ a_{2} $ , ..., $ a_{k} $ , that $ a_{1} $ is connected with $ a_{2} $ , $ a_{2} $ is connected with $ a_{3} $ , ..., $ a_{k-1} $ is connected with $ a_{k} $ , $ a_{k} $ is connected with $ a_{1} $ . Some elements of the sequence can coincide, that is, the cycle should not necessarily be simple. The number of rooms in the cycle is considered as $ k $ , the sequence's length. Note that the minimum possible length equals two.