CF1485B Replace and Keep Sorted

Description

Given a positive integer $ k $ , two arrays are called $ k $ -similar if: - they are strictly increasing; - they have the same length; - all their elements are positive integers between $ 1 $ and $ k $ (inclusive); - they differ in exactly one position. You are given an integer $ k $ , a strictly increasing array $ a $ and $ q $ queries. For each query, you are given two integers $ l_i \leq r_i $ . Your task is to find how many arrays $ b $ exist, such that $ b $ is $ k $ -similar to array $ [a_{l_i},a_{l_i+1}\ldots,a_{r_i}] $ .

Input Format

The first line contains three integers $ n $ , $ q $ and $ k $ ( $ 1\leq n, q \leq 10^5 $ , $ n\leq k \leq 10^9 $ ) — the length of array $ a $ , the number of queries and number $ k $ . The second line contains $ n $ integers $ a_1, a_2, \ldots,a_n $ ( $ 1 \leq a_i \leq k $ ). This array is strictly increasing — $ a_1 < a_2 < \ldots < a_n $ . Each of the following $ q $ lines contains two integers $ l_i $ , $ r_i $ ( $ 1 \leq l_i \leq r_i \leq n $ ).

Output Format

Print $ q $ lines. The $ i $ -th of them should contain the answer to the $ i $ -th query.

Explanation/Hint

In the first example: In the first query there are $ 4 $ arrays that are $ 5 $ -similar to $ [2,4] $ : $ [1,4],[3,4],[2,3],[2,5] $ . In the second query there are $ 3 $ arrays that are $ 5 $ -similar to $ [4,5] $ : $ [1,5],[2,5],[3,5] $ .