CF1485B Replace and Keep Sorted
Description
Given a positive integer $ k $ , two arrays are called $ k $ -similar if:
- they are strictly increasing;
- they have the same length;
- all their elements are positive integers between $ 1 $ and $ k $ (inclusive);
- they differ in exactly one position.
You are given an integer $ k $ , a strictly increasing array $ a $ and $ q $ queries. For each query, you are given two integers $ l_i \leq r_i $ . Your task is to find how many arrays $ b $ exist, such that $ b $ is $ k $ -similar to array $ [a_{l_i},a_{l_i+1}\ldots,a_{r_i}] $ .
Input Format
The first line contains three integers $ n $ , $ q $ and $ k $ ( $ 1\leq n, q \leq 10^5 $ , $ n\leq k \leq 10^9 $ ) — the length of array $ a $ , the number of queries and number $ k $ .
The second line contains $ n $ integers $ a_1, a_2, \ldots,a_n $ ( $ 1 \leq a_i \leq k $ ). This array is strictly increasing — $ a_1 < a_2 < \ldots < a_n $ .
Each of the following $ q $ lines contains two integers $ l_i $ , $ r_i $ ( $ 1 \leq l_i \leq r_i \leq n $ ).
Output Format
Print $ q $ lines. The $ i $ -th of them should contain the answer to the $ i $ -th query.
Explanation/Hint
In the first example:
In the first query there are $ 4 $ arrays that are $ 5 $ -similar to $ [2,4] $ : $ [1,4],[3,4],[2,3],[2,5] $ .
In the second query there are $ 3 $ arrays that are $ 5 $ -similar to $ [4,5] $ : $ [1,5],[2,5],[3,5] $ .