CF1485D Multiples and Power Differences
Description
You are given a matrix $ a $ consisting of positive integers. It has $ n $ rows and $ m $ columns.
Construct a matrix $ b $ consisting of positive integers. It should have the same size as $ a $ , and the following conditions should be met:
- $ 1 \le b_{i,j} \le 10^6 $ ;
- $ b_{i,j} $ is a multiple of $ a_{i,j} $ ;
- the absolute value of the difference between numbers in any adjacent pair of cells (two cells that share the same side) in $ b $ is equal to $ k^4 $ for some integer $ k \ge 1 $ ( $ k $ is not necessarily the same for all pairs, it is own for each pair).
We can show that the answer always exists.
Input Format
The first line contains two integers $ n $ and $ m $ ( $ 2 \le n,m \le 500 $ ).
Each of the following $ n $ lines contains $ m $ integers. The $ j $ -th integer in the $ i $ -th line is $ a_{i,j} $ ( $ 1 \le a_{i,j} \le 16 $ ).
Output Format
The output should contain $ n $ lines each containing $ m $ integers. The $ j $ -th integer in the $ i $ -th line should be $ b_{i,j} $ .
Explanation/Hint
In the first example, the matrix $ a $ can be used as the matrix $ b $ , because the absolute value of the difference between numbers in any adjacent pair of cells is $ 1 = 1^4 $ .
In the third example:
- $ 327 $ is a multiple of $ 3 $ , $ 583 $ is a multiple of $ 11 $ , $ 408 $ is a multiple of $ 12 $ , $ 664 $ is a multiple of $ 8 $ ;
- $ |408 - 327| = 3^4 $ , $ |583 - 327| = 4^4 $ , $ |664 - 408| = 4^4 $ , $ |664 - 583| = 3^4 $ .