CF1515H Phoenix and Bits
Description
Phoenix loves playing with bits — specifically, by using the bitwise operations AND, OR, and XOR. He has $ n $ integers $ a_1, a_2, \dots, a_n $ , and will perform $ q $ of the following queries:
1. replace all numbers $ a_i $ where $ l \le a_i \le r $ with $ a_i $ AND $ x $ ;
2. replace all numbers $ a_i $ where $ l \le a_i \le r $ with $ a_i $ OR $ x $ ;
3. replace all numbers $ a_i $ where $ l \le a_i \le r $ with $ a_i $ XOR $ x $ ;
4. output how many distinct integers $ a_i $ where $ l \le a_i \le r $ .
For each query, Phoenix is given $ l $ , $ r $ , and $ x $ . Note that he is considering the values of the numbers, not their indices.
Input Format
The first line contains two integers $ n $ and $ q $ ( $ 1 \le n \le 2 \cdot 10^5 $ ; $ 1 \le q \le 10^5 $ ) — the number of integers and the number of queries, respectively.
The second line contains $ n $ integers $ a_1, a_2, \dots, a_n $ ( $ 0 \le a_i < 2^{20} $ ) — the integers that Phoenix starts with.
The next $ q $ lines contain the queries. For each query, the first integer of each line is $ t $ ( $ 1 \le t \le 4 $ ) — the type of query.
If $ t \in \{1, 2, 3\} $ , then three integers $ l_i $ , $ r_i $ , and $ x_i $ will follow ( $ 0 \le l_i, r_i, x_i < 2^{20} $ ; $ l_i \le r_i $ ).
Otherwise, if $ t=4 $ , two integers $ l_i $ and $ r_i $ will follow ( $ 0 \le l_i \le r_i < 2^{20} $ ).
It is guaranteed that there is at least one query where $ t=4 $ .
Output Format
Print the answer for each query where $ t=4 $ .
Explanation/Hint
In the first example:
- For the first query, $ 2 $ is replaced by $ 2 $ AND $ 2 = 2 $ and $ 3 $ is replaced with $ 3 $ AND $ 2 = 2 $ . The set of numbers is $ \{1, 2, 4, 5\} $ .
- For the second query, there are $ 3 $ distinct numbers between $ 2 $ and $ 5 $ : $ 2 $ , $ 4 $ , and $ 5 $ .
- For the third query, $ 2 $ is replaced by $ 2 $ XOR $ 3 = 1 $ , $ 4 $ is replaced by $ 4 $ XOR $ 3 = 7 $ , and $ 5 $ is replaced by $ 5 $ XOR $ 3 = 6 $ . The set of numbers is $ \{1, 6, 7\} $ .
- For the fourth query, there are $ 2 $ distinct numbers between $ 1 $ and $ 6 $ : $ 1 $ and $ 6 $ .
- For the fifth query, $ 1 $ is replaced by $ 1 $ OR $ 8 = 9 $ . The set of numbers is $ \{6, 7, 9\} $ .
- For the sixth query, there is one distinct number between $ 8 $ and $ 10 $ : $ 9 $ .