Fly Around the World

题意翻译

一个飞行员飞过 $n$ 座城市,在第 $i$ 座城市的高度为 $h_i$。有三种限制 $$x_i^-\le b_i\le x_i^+$$ $$y_i^-\le b_i-b_{i-1}\le y_i^+$$ $$z_i^- \le (b_i - b_{i-1}) - (b_{i-1} - b_{i-2}) \le z_i^+$$ 多组数据,每次询问是否存在这样的序列。 保证把$x_i^-, y_i^-, z_i^-$减小$10^{-6}$或把$x_i^+, y_i^+, z_i^+$增加$10^{-6}$不会改变答案。

题目描述

After hearing the story of Dr. Zhang, Wowo decides to plan his own flight around the world. He already chose $ n $ checkpoints in the world map. Due to the landform and the clouds, he cannot fly too high or too low. Formally, let $ b_i $ be the height of Wowo's aircraft at checkpoint $ i $ , $ x_i^-\le b_i\le x_i^+ $ should be satisfied for all integers $ i $ between $ 1 $ and $ n $ , where $ x_i^- $ and $ x_i^+ $ are given integers. The angle of Wowo's aircraft is also limited. For example, it cannot make a $ 90 $ -degree climb. Formally, $ y_i^-\le b_i-b_{i-1}\le y_i^+ $ should be satisfied for all integers $ i $ between $ 2 $ and $ n $ , where $ y_i^- $ and $ y_i^+ $ are given integers. The final limitation is the speed of angling up or angling down. An aircraft should change its angle slowly for safety concerns. Formally, $ z_i^- \le (b_i - b_{i-1}) - (b_{i-1} - b_{i-2}) \le z_i^+ $ should be satisfied for all integers $ i $ between $ 3 $ and $ n $ , where $ z_i^- $ and $ z_i^+ $ are given integers. Taking all these into consideration, Wowo finds that the heights at checkpoints are too hard for him to choose. Please help Wowo decide whether there exists a sequence of real numbers $ b_1, \ldots, b_n $ satisfying all the contraints above.

输入输出格式

输入格式


Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 66\,666 $ ). Description of the test cases follows. The first line of each test case contains a single integer $ n $ ( $ 3 \le n \le 100\,000 $ ). The $ i $ -th of the next $ n $ lines contains two integers $ x_i^- $ , $ x_i^+ $ ( $ -10^8\le x_i^-\le x_i^+\le 10^8 $ ) denoting the lower and upper bound of $ b_i $ . The $ i $ -th of the next $ n-1 $ lines contains two integers $ y_{i+1}^- $ , $ y_{i+1}^+ $ ( $ -10^8\le y_{i+1}^-\le y_{i+1}^+\le 10^8 $ ) denoting the lower and upper bound of $ b_{i+1}-b_i $ . The $ i $ -th of the next $ n-2 $ lines contains two integers $ z_{i+2}^- $ , $ z_{i+2}^+ $ ( $ -10^8\le z_{i+2}^-\le z_{i+2}^+\le 10^8 $ ) denoting the lower and upper bound of $ (b_{i+2}-b_{i+1}) - (b_{i+1}-b_i) $ . It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 200\,000 $ . It is guaranteed that relaxing every constraint by $ 10^{-6} $ (i.e., decrease $ x_i^-, y_i^-, z_i^- $ by $ 10^{-6} $ and increase $ x_i^+, y_i^+, z_i^+ $ by $ 10^{-6} $ ) will not change the answer.

输出格式


For each test case, output YES if a sequence $ b_1,\ldots, b_n $ satisfying the constraints exists and NO otherwise. The sequence $ b_1,\ldots, b_n $ is not required.

输入输出样例

输入样例 #1

4
3
0 1
0 1
0 1
1 1
1 1
-100 100
3
-967 541
-500 834
-724 669
-858 978
-964 962
-645 705
4
0 0
0 1
0 1
1 1
0 1
0 1
0 1
0 0
0 0
4
0 0
33 34
65 66
100 100
0 100
0 100
0 100
0 0
0 0

输出样例 #1

NO
YES
YES
NO

说明

In the first test case, all $ b_i $ 's are in $ [0,1] $ . Because of the constraints $ 1=y_2^-\le b_2-b_1\le y_2^+=1 $ , $ b_2-b_1 $ must be $ 1 $ . So $ b_2=1 $ and $ b_1=0 $ must hold. Then by $ 1=y_3^-\le b_3-b_2\le y_3^+=1 $ , $ b_3 $ equals $ 2 $ . This contradicts the constraint of $ b_3\le 1 $ . So no solution exists. In the second test case, we can let all $ b_i $ 's be $ 0 $ . In the third test case, one possible solution is $ b_1=0 $ , $ b_2=1/3 $ , $ b_3=2/3 $ , $ b_4=1 $ .