CF1550A Find The Array
Description
Let's call an array $ a $ consisting of $ n $ positive (greater than $ 0 $ ) integers beautiful if the following condition is held for every $ i $ from $ 1 $ to $ n $ : either $ a_i = 1 $ , or at least one of the numbers $ a_i - 1 $ and $ a_i - 2 $ exists in the array as well.
For example:
- the array $ [5, 3, 1] $ is beautiful: for $ a_1 $ , the number $ a_1 - 2 = 3 $ exists in the array; for $ a_2 $ , the number $ a_2 - 2 = 1 $ exists in the array; for $ a_3 $ , the condition $ a_3 = 1 $ holds;
- the array $ [1, 2, 2, 2, 2] $ is beautiful: for $ a_1 $ , the condition $ a_1 = 1 $ holds; for every other number $ a_i $ , the number $ a_i - 1 = 1 $ exists in the array;
- the array $ [1, 4] $ is not beautiful: for $ a_2 $ , neither $ a_2 - 2 = 2 $ nor $ a_2 - 1 = 3 $ exists in the array, and $ a_2 \ne 1 $ ;
- the array $ [2] $ is not beautiful: for $ a_1 $ , neither $ a_1 - 1 = 1 $ nor $ a_1 - 2 = 0 $ exists in the array, and $ a_1 \ne 1 $ ;
- the array $ [2, 1, 3] $ is beautiful: for $ a_1 $ , the number $ a_1 - 1 = 1 $ exists in the array; for $ a_2 $ , the condition $ a_2 = 1 $ holds; for $ a_3 $ , the number $ a_3 - 2 = 1 $ exists in the array.
You are given a positive integer $ s $ . Find the minimum possible size of a beautiful array with the sum of elements equal to $ s $ .
Input Format
The first line contains one integer $ t $ ( $ 1 \le t \le 5000 $ ) — the number of test cases.
Then $ t $ lines follow, the $ i $ -th line contains one integer $ s $ ( $ 1 \le s \le 5000 $ ) for the $ i $ -th test case.
Output Format
Print $ t $ integers, the $ i $ -th integer should be the answer for the $ i $ -th testcase: the minimum possible size of a beautiful array with the sum of elements equal to $ s $ .
Explanation/Hint
Consider the example test:
1. in the first test case, the array $ [1] $ meets all conditions;
2. in the second test case, the array $ [3, 4, 1] $ meets all conditions;
3. in the third test case, the array $ [1, 2, 4] $ meets all conditions;
4. in the fourth test case, the array $ [1, 4, 6, 8, 10, 2, 11] $ meets all conditions.