CF1557C Moamen and XOR
Description
Moamen and Ezzat are playing a game. They create an array $ a $ of $ n $ non-negative integers where every element is less than $ 2^k $ .
Moamen wins if $ a_1 \,\&\, a_2 \,\&\, a_3 \,\&\, \ldots \,\&\, a_n \ge a_1 \oplus a_2 \oplus a_3 \oplus \ldots \oplus a_n $ .
Here $ \& $ denotes the [bitwise AND operation](https://en.wikipedia.org/wiki/Bitwise_operation#AND), and $ \oplus $ denotes the [bitwise XOR operation](https://en.wikipedia.org/wiki/Bitwise_operation#XOR).
Please calculate the number of winning for Moamen arrays $ a $ .
As the result may be very large, print the value modulo $ 1\,000\,000\,007 $ ( $ 10^9 + 7 $ ).
Input Format
The first line contains a single integer $ t $ ( $ 1 \le t \le 5 $ )— the number of test cases.
Each test case consists of one line containing two integers $ n $ and $ k $ ( $ 1 \le n\le 2\cdot 10^5 $ , $ 0 \le k \le 2\cdot 10^5 $ ).
Output Format
For each test case, print a single value — the number of different arrays that Moamen wins with.
Print the result modulo $ 1\,000\,000\,007 $ ( $ 10^9 + 7 $ ).
Explanation/Hint
In the first example, $ n = 3 $ , $ k = 1 $ . As a result, all the possible arrays are $ [0,0,0] $ , $ [0,0,1] $ , $ [0,1,0] $ , $ [1,0,0] $ , $ [1,1,0] $ , $ [0,1,1] $ , $ [1,0,1] $ , and $ [1,1,1] $ .
Moamen wins in only $ 5 $ of them: $ [0,0,0] $ , $ [1,1,0] $ , $ [0,1,1] $ , $ [1,0,1] $ , and $ [1,1,1] $ .