CF1573B Swaps
Description
You are given two arrays $ a $ and $ b $ of length $ n $ . Array $ a $ contains each odd integer from $ 1 $ to $ 2n $ in an arbitrary order, and array $ b $ contains each even integer from $ 1 $ to $ 2n $ in an arbitrary order.
You can perform the following operation on those arrays:
- choose one of the two arrays
- pick an index $ i $ from $ 1 $ to $ n-1 $
- swap the $ i $ -th and the $ (i+1) $ -th elements of the chosen array
Compute the minimum number of operations needed to make array $ a $ lexicographically smaller than array $ b $ .For two different arrays $ x $ and $ y $ of the same length $ n $ , we say that $ x $ is lexicographically smaller than $ y $ if in the first position where $ x $ and $ y $ differ, the array $ x $ has a smaller element than the corresponding element in $ y $ .
Input Format
Each test contains multiple test cases. The first line contains the number of test cases $ t $ ( $ 1 \le t \le 10^4 $ ).
The first line of each test case contains a single integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the length of the arrays.
The second line of each test case contains $ n $ integers $ a_1, a_2, \ldots, a_n $ ( $ 1 \le a_i \le 2n $ , all $ a_i $ are odd and pairwise distinct) — array $ a $ .
The third line of each test case contains $ n $ integers $ b_1, b_2, \ldots, b_n $ ( $ 1 \le b_i \le 2n $ , all $ b_i $ are even and pairwise distinct) — array $ b $ .
It is guaranteed that the sum of $ n $ over all test cases does not exceed $ 10^5 $ .
Output Format
For each test case, print one integer: the minimum number of operations needed to make array $ a $ lexicographically smaller than array $ b $ .
We can show that an answer always exists.
Explanation/Hint
In the first example, the array $ a $ is already lexicographically smaller than array $ b $ , so no operations are required.
In the second example, we can swap $ 5 $ and $ 3 $ and then swap $ 2 $ and $ 4 $ , which results in $ [3, 5, 1] $ and $ [4, 2, 6] $ . Another correct way is to swap $ 3 $ and $ 1 $ and then swap $ 5 $ and $ 1 $ , which results in $ [1, 5, 3] $ and $ [2, 4, 6] $ . Yet another correct way is to swap $ 4 $ and $ 6 $ and then swap $ 2 $ and $ 6 $ , which results in $ [5, 3, 1] $ and $ [6, 2, 4] $ .